Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Diethyl 3,8-dimethyl-4,7-diazadeca-2,8-dienedioate

Zhi-Min Jin, ${ }^{\text {a* }}$ Li Li, ${ }^{\text {a }}$ Mei-Chao Li, ${ }^{\text {b }}$ Mao-Lin Hu ${ }^{\mathrm{c}}$ and Liang Shen ${ }^{\text {d }}$

${ }^{\text {a }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\mathbf{b}}$ College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, 'Department of Chemistry, Wenzhou Normal College, Wenzhou, Zhejiang 325003, People's Republic of China, and department of Chemistry, Hangzhou
Teachers' College, Hangzhou, People's Republic of China
Correspondence e-mail: zimichem@sina.com
Received 21 April 2004
Accepted 1 July 2004
Online 11 August 2004
The title compound, $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$, consists of two symmetric moieties related through a twofold axis. The whole molecule has a cis conformation. Both the ionic enol form and the nonionic keto form make comparable contributions to the structure. In the crystal structure, infinite supramolecular chains are formed through $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

β-Enamino esters represent an important class of functionalized synthetic building blocks (Bartoli et al., 2004). Recently, the title compound, (I), has been synthesized for the first time in our laboratory. According to a model of synergetic mutual reinforcement of hydrogen bonding and π-delocalization within a heterodienic system (Gilli et al., 1989, 1993; Bertolasi et al., 1991), (I) may be regarded as containing both the ionic

(I)

enolic and non-ionic keto forms (see scheme). The structure of (I) has been established by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, and IR spectroscopy, and has been fully confirmed by an X-ray structural analysis.

As shown in Fig. 1, compound (I) is built up from two asymmetric units related through a twofold axis. The whole

Figure 1
The formula unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are illustrated by dashed lines. [Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.]
molecule is arranged in a cis conformation with respect to the $\mathrm{C} 6-\mathrm{C} 6\left(1-x, y, \frac{3}{2}-z\right)$ bond. The $\mathrm{C} 3=\mathrm{O} 1$ bond [1.221 (2) \AA] is shorter than a normal single $\mathrm{C}-\mathrm{O}$ bond (ca $1.43 \AA$; Weininger \& Stermitz, 1984), but longer than the double $\mathrm{C}=\mathrm{O}$ bonds found in some esters, such as in an Amadori compound [1.189 (5) Å; Kojić-Prodić et al., 1995], a benzoate [1.200 (4) Å; Huertas et al., 1997] and a glycine derivative [1.186 (2) A; Zhao et al., 2002]. The $\mathrm{N}=\mathrm{C} 5$ bond in (I) [1.344 (2) \AA] is longer than a typical double $\mathrm{C}=\mathrm{N}$ bond $(c a$ $1.30 \AA$) but shorter than the $\mathrm{C}-\mathrm{N}$ single bond $[\mathrm{N}-\mathrm{C} 6=$ 1.443 (4) \AA]. The C3-C4 bond length $[1.425(2) \AA$) is intermediate between a single $\mathrm{C}-\mathrm{C}$ bond (ca $1.54 \AA$) and a $\mathrm{C}=\mathrm{C}$ double bond (ca $1.34 \AA$). These features of the bond lengths in (I) indicate that both the ionic enolic and the non-ionic keto forms make comparable contributions to the structure.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra show the olefinic resonances of atom C 4 and its attached H atom at noticeably higher magnetic fields than normal, at 4.93 and 83.83 p.p.m., respectively. This indicates the contribution of the non-ionic keto form, which undergoes π-delocalization. On the other hand, the NH signal appears at a much lower magnetic field (8.64 p.p.m.) than normal in the ${ }^{1} \mathrm{H}$ NMR spectrum and this is indicative of the contribution of the ionic enolic form. These two forms are also observed in the related compound with an ethylenediimine (Özkar et al., 2004), which shows almost the same deviations of the corresponding signals in the NMR spectra.

The IR spectroscopic data for (I) are consistent with the crystal structure. The absorption band centred at around $3297 \mathrm{~cm}^{-1}$ is readily ascribed to the NH group. The absorption band of $\mathrm{C}=\mathrm{O}$ stretching at $1604 \mathrm{~cm}^{-1}$ appears to be lower than that for a typical $\mathrm{C}=\mathrm{O}$ ketone group (1725-1705 cm^{-1}; Pine et al., 1980) and is indicative of the ionic enolic form of the molecule.

The asymmetric unit of (I) is almost planar, with mean and maximum deviations of 0.0014 and $0.1330 \AA$, respectively, as the π-delocalization is reinforced by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 1$ hydrogen bond. The sum of the angles around the N atom is close to 360°, indicating that the N atom is involved in the ionic enolic

Part of the crystal structure of (I), showing the infinite hydrogen-bonded chains running along the [001] direction. H atoms have been omitted for clarity, except those involved in hydrogen bonds. Hydrogen bonds are illustrated by dashed lines.
form. In the solid state, the two halves of (I) are skewed, with a dihedral angle of 46.3° between them. In the structure, an infinite zigzag chain of molecules of (I) running along the [001] direction (Fig. 2) is built up via an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O} 1(1-x, 1-y$, $1-z$) hydrogen bond. These intermolecular hydrogen bonds form a ring which may be described as graph set $R_{2}^{2}(4)$ (Etter, 1990). This ring is embedded in the chain. There are no hydrogen bonds between separate chains. Duplication of the chain forms layers of (I) parallel to the (010) plane.

Experimental

Ethyl acetoacetate and ethylenediamine, in a molar ratio of $2: 1$, were mixed together and refluxed with stirring for 2 h . Crystals of (I) were formed by recrystallization of the resulting solid from ethanol, with a yield of approximately 65% based on ethyl acetoacetate. Spectroscopic analyses, IR (KBr, v, cm^{-1}): 3297, 2984, 2953, 2898, 1604 (br), 1509, 1438, 1390, 1288, 1259, 1224, 1167 (br), 1115, 1092, 1067, 1021, 980, 784, 726, 566; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.): $8.64(1 \mathrm{H}, \mathrm{NH}), 4.48(1 \mathrm{H}$, $s, \mathrm{C} 4-\mathrm{H}), 4.07\left(2 \mathrm{H}, q, \mathrm{C} 2-\mathrm{H}_{2}\right), 3.35\left(2 \mathrm{H}, s, \mathrm{C} 6-\mathrm{H}_{2}\right), 1.90(3 \mathrm{H}, s$, $\left.\mathrm{C} 7-\mathrm{H}_{3}\right), 1.23\left(3 \mathrm{H}, t, \mathrm{C} 1-\mathrm{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.): 170.86 $(\mathrm{C} 5), 161.55(\mathrm{C} 3), 83.83(\mathrm{C} 4), 58.72\left(\mathrm{CH}_{2}\right), 44.07\left(\mathrm{CH}_{2}\right), 19.49\left(\mathrm{CH}_{3}\right)$, $14.85\left(\mathrm{CH}_{3}\right)$.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=284.35$
Monoclinic, $C 2 / c$
$a=11.734(3) \AA$
$b=10.566(2) \AA$
$c=13.418(3) \AA$
$\beta=111.440(10)^{\circ}$
$V=1548.5(6) \AA^{3}$
$Z=4$
$D_{x}=1.220 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 850 reflections
$\theta=2.7-20.2^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.25 \times 0.15 \times 0.15 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.98, T_{\text {max }}=0.99$
4031 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.112$
$S=0.91$
1520 reflections
93 parameters

H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0455 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.11 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\max }=0.115 \mathrm{e}_{\min }=-0.1 \AA^{-3}$

Table 1
Selected interatomic distances (\AA).

C1-C2	$1.479(2)$	C4-C5	$1.356(2)$
C2-O2	$1.436(2)$	C5-N	$1.344(2)$
C3-O1	$1.221(2)$	C5-C7	$1.499(2)$
C3-O2	$1.353(2)$	C6-N	$1.445(2)$
C3-C4	$1.425(2)$	C6-C6	$1.520(3)$

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N-H $\cdots \mathrm{O} 1$	0.86	2.14	$2.784(2)$	132
N-H $\cdots 1^{\mathrm{i}}$	0.86	2.67	$3.292(2)$	130

Symmetry code: (i) $1-x, 1-y, 1-z$.

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$ and $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for others.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1052). Services for accessing these data are described at the back of the journal.

References

Bartoli, G., Bosco, M., Locatelli, M., Marcantoni, E., Melchiorre, P. \& Sambri, L. (2004). Synlett, pp. 239-242.

Bertolasi, V., Gilli, P., Ferretti, V. \& Gilli, G. (1991). J. Am. Chem. Soc. 113, 4917-4925.
Bruker (2000). SMART (Version 5.618), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gilli, G., Bellucci, F., Ferretti, V. \& Bertolasi, V. (1989). J. Am. Chem. Soc. 111, 1023-1028.
Gilli, P., Bertolasi, V., Gilli, G. \& Ferretti, V. (1993). Acta Cryst. B49, 564-576.
Huertas, R., Fernández, M. J., Toledano, M. S., Gálvez, E., Fonseca, I., Bellanato, J. \& Carmona, P. (1997). J. Mol. Struct. 408-409, 493-497.
Kojić-Prodić, B., Milinković, V., Kidrić, J., Pristovšek, P., Horvat, S. \& Jakas, A. (1995). Carbohydr. Res. 279, 21-39.

Özkar, S., Ülkü, D., Yıldırım, L. T., Biricik, N. \& Gümgüm, B. (2004). J. Mol. Struct. 688, 207-211.
Pine, S. H., Hendrickson, J. B., Cram, D. J. \& Hammond, G. S. (1980). Organic Chemistry, 4th ed., p. 165. New York: McGraw-Hill Inc.
Weininger, S. J. \& Stermitz, F. R. (1984). Organic Chemistry, p. 54. London: Academic Press.
Zhao, X.-L., Xu, W., Chen, X.-D., Wang, Y.-M., Meng, J.-B. \& Wang, S.-F. (2002). J. Mol. Struct. 609, 195-198.

